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Abstract 

Blob-filaments (or simply ‘blobs’) are coherent structures formed by turbulence and 

sustained by nonlinear processes in the edge and scrape-off layer (SOL) of tokamaks and other 

magnetically confined plasmas. The dynamics of these blob-filaments, in particular their radial 

motion, can influence the scrape-off layer width and plasma interactions with both the divertor 

target and with the main chamber walls.  Motivated by recent results from the XGC1 gyrokinetic 

simulation code reported on elsewhere [J. Cheng et al. Nucl. Fusion (accepted for publication) 

and available at  https://arxiv.org/abs/2302.02877v1], a theory of rapidly spinning blob-filaments 

has been developed.  The theory treats blob filaments in the closed flux surface region or the 

region that is disconnected from sheaths in the SOL. It extends previous work by treating blob 

spin, arising from partially or fully adiabatic electrons, as the leading order effect and retaining 

inertial (ion charge polarization) physics in next order. Spin helps to maintain blob coherency 

and affects the blob’s propagation speed. Dipole charge polarization, treated perturbatively, gives 

rise to blob-filaments with relatively slow radial velocity, comparable to that observed in the 

simulations. The theory also treats the interaction of rapidly spinning blob-filaments with a zonal 

flow layer. It is shown analytically that the flow layer can act like a transport barrier for these 

structures. Finally parallel electron kinetic effects are incorporated into the theory.  Various 

asymptotic parameter regimes are discussed and asymptotic expressions for the radial and 

poloidal motion of the blob-filaments are obtained. 

 

Keywords: blob, filament, spin, adiabatic, electron kinetics, zonal flow  
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I. Introduction 

Plasma turbulent transport in the edge (i.e., closed flux surface region) and scrape-off 

layer (SOL) plasma plays a critical role in the operation of tokamaks and most other magnetic 

confinement devices. Turbulent transport in the edge influences edge plasma gradients of density 

and temperature, which indirectly help to determine the overall core confinement properties of 

the device. In the SOL, those plasma profile gradients set the width of the exhaust heat flux 

channel and hence the heat loads on the divertor target plate and its short term and long-term 

survivability.  Plasma that can transport long distances across the SOL may also impact the main 

chamber walls where it can cause erosion, impurity release and recycling.  

An important physical process associated with turbulence and transport in the edge and 

SOL is the intermittent generation by edge turbulence of coherent structures often called blobs or 

blob-filaments. In this paper the terms blob-filament, blob and filament will be used almost 

interchangeably, the choice depending on whether the particular emphasis of the discussion is on 

perpendicular (blob) or parallel (to B, filament) structure.  

Blobs were observed by optical emission as far back as the 1980’s in the Caltech 

tokamak.1 Their importance for SOL transport and a theoretical mechanism for their structure 

and propagation was highlighted in a classic paper much later.2 A review of blob theory3 and 

another on the comparison of blob theory and experiment4 describe progress as of 2008 and 2011 

respectively.  Considerable effort, both in theory, simulation and experiment have been devoted 

to the topic in the intervening years.  Some of those papers that are most relevant to the present 

work will be cited subsequently. 

A blob-filament is basically a magnetic flux tube that has excess density and pressure 

relative to the surrounding plasma. Rapid parallel plasma flow and/or transport elongates the 

structures in the direction of the magnetic field resulting in parallel scale lengths of many, even 

tens of, meters.  In the direction across the magnetic field, blobs usually have dimensions 

somewhat comparable to the turbulence that created them, typically cm-scale in order of 

magnitude. 

The basic mechanism giving rise to the radial motion of blob-filaments is that the 

oppositely directed curvature and grad-B drifts of electrons and ions in the blob result in a 

charge-polarization-induced electric field, roughly vertical or poloidal in the outboard edge of a 

tokamak. The E×B drift then propels the blobs in the outward radial direction. The curvature-
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grad-B-induced current is ultimately closed to form a complete circuit by other mechanisms such 

as cross-field ion polarization current or in the SOL by the sheath and wall currents.3,4 

Soon after these basic mechanisms were understood, it was recognized that blob spin 

could rotate and mix the polarization charges and thereby impact and slow the motion of the 

blobs.5 This physics was described using relatively simple models treating spin for sheath-

connect SOL blobs that have an internal electron temperature gradient.  In this case, the spin 

arises from the sheath-induced blob electric field, i.e., from the radial blob profile gradient of  

~ 3Te where  is the electrostatic potential, and Te the electron temperature.  Subsequent work 

addressed the role of Boltzmann spinning.6,7,8 

It was shown in Ref. 6 that parallel variation of density along the filament will set up a 

parallel varying Boltzmann-like potential along the field line, which causes blob spin.  The spin 

was shown to affect the blob dynamics when the Boltzmann potential exceeded the dipole 

potential. Realistic tokamak magnetic geometry also causes parallel variation along the 

filament,7 and an associated reduction in the radial blob velocity was observed in these fluid 

simulations.  Tilting of the polarization electric field in the RZ plane due to the Boltzmann 

potential converts radial blob motion into poloidal motion.8,9 

Thus, a variety of mechanisms having to do with the coupling of the blob’s radial 

potential to its density and/or temperature gradients are expected on theoretical grounds to result 

in blob spin.  Experimentally, direct detection of blob spin using optical techniques such as gas 

puff imaging (GPI)10 has so far not been possible because spin motion is mainly along lines of 

nearly constant optical emission. However, blob spin has been confirmed directly in an 

experiment employing a rake probe.11  

Since blobs are created from turbulence, it is likely that the degree of blob spin, at least at 

blob birth, is related to the correlation of fluctuations of density (ne) and potential (). 

Boltzmann electrons imply that ne and  are in-phase and suggest blob spin (  ln ne) while 

convective electrons ne  −vEne imply that ne and  are  out-of-phase, suggesting 

non-spinning blobs.  Thus, the degree of blob spin may be related to the nature of the underlying 

instabilities and turbulence creating them, with spinning blobs promoted by drift-type 

instabilities and non-spinning blobs promoted by instabilities of the interchange or convective 

type.  Cross-phase probe measurements of the edge density and potential fluctuations are 

routinely available. An interesting example comes from TJ-K stellarator where the cross- phase 

between density and potential was related to observed differences in blob speeds.12 
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The occurrence of spinning vs. non-spinning blobs in fusion experiments and the possible 

relationship to the nature of underlying instabilities remains an open question for investigation. 

There are ample theoretical reasons and some experimental evidence11 for blob spin, and yet 

other experiments13-16 have shown encouraging agreement in blob velocity scaling with theory 

based on non-spinning blobs. In this paper, we focus on rapidly spinning blobs. The work is 

motivated by XGC-1 simulation results discussed subsequently, and also because rapidly 

spinning blobs have not been previously explored in as much detail as their non-spinning 

counterparts. 

Previous theory and 2D fluid simulations in a slab model also addressed the question of 

how a blob interacts with a localized background sheared flow. Ref. 17 developed a theory-based 

estimate for the destruction of a non-spinning blob from a combination of shearing by the flow 

and subsequent diffusion.  Fluid simulations18 considered the effect of a biased limiter on SOL 

sheath-connected non-spinning density blobs. It was shown that a relatively large sheared flow 

destroys non-spinning blobs. The 2D fluid model for Te-induced spin for sheath-connected blobs 

in the SOL was also used to study the interaction of those blobs with sheared flows.5 Spinning 

blobs were shown to survive in the presence of weak sheared flows, and the relative sign of 

vorticity of the blob and flow region were shown to be important. Similar interactions of vortices 

and sheared flows were reported in experiments on RFX-mod11,19  and in fluid simulations.20  

Blob suppression by sheared flow was shown in reduced model fluid simulations with the 

SOLT code.21 In addition to blob suppression, gyrofluid simulations have shown that blobs 

inside and outside a shear layer can merge, thereby exchanging particles and heat and then 

subsequently break up giving rise to a novel transport process.22 The parallel variation of flows 

has also been shown to reduce blob radial motion.23 In other theoretical work, blob creation has 

been linked to the interaction of radial streamers with sheared flows.24  

Several experimental papers have reported on the interaction of blobs with sheared flows. 

Correlations between poloidal flows and quiet periods in edge turbulence were seen in 

experiments on NSTX.25,26 In the EAST tokamak, suppression effects on blobs and the 

reduction of associated radial transport were observed in experiments in which the flow shear 

was increased by the application of lower hybrid waves.27 Blob distortion and blob splitting was 

observed in the ASDEX Upgrade tokamak from sheared flows induced by radio-frequency 

waves.28 Eddy tilting and breaking by sheared flows was also observed on TEXTOR.29 In the 

TORPEX device, it was shown that blobs can extract energy from sheared flows.30 The 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
5
2
3
8
9



5 
 

generation of blob-filaments and their interaction with background flows and with the turbulent 

spectrum was studied in experiments in the HL-2A tokamak.31  

A comprehensive study of blob properties using the gas puff imaging diagnostic was 

reported for the NSTX device including L- and H-mode plasmas32 where the effects of flow 

shear layers might be expected to be quite different. A suppression of blobs in H-mode plasmas 

was observed. Blob suppression in Ohmic H-modes was also reported in another study.33 

Blobs with negative radial velocity have been observed in experiments13,32 and also in 

XGC1 simulations.34  We will show in this paper that a possible explanation for negative radial 

velocity blobs is the interaction of spinning blobs with a flow shear layer. 

In this paper, the theory of blob dynamics in the presence of the Boltzmann potential is 

extended by developing a perturbation theory in which the leading order consists of a rapidly 

spinning blob-filament. The theory is motivated by recent results from the XGC1 gyrokinetic 

simulation code, reported on elsewhere.34 The XGC1 simulations employed drift-kinetic 

electrons and it was found that the electron response was dominantly adiabatic resulting in the 

observed leading order blob spin. The dipole potential giving rise to blob propagation in the 

theory is obtained in next order. The technique additionally allows an analytical treatment of the 

interaction of these rapidly spinning blob-filaments with a zonal flow layer. The theory was 

originally developed to describe blobs that were seeded in the closed flux surface region in the 

XGC1 simulations. It is thus directly applicable to that region. The theory is also applicable to 

blobs in the SOL when they are in the inertial regime, and are therefore not sheath connected.  A 

minor extension to the theory could incorporate the sheath conductivity, but that will not be 

demonstrated here in order to limit the complexity and number of possible parameter regimes. 

The plan of our paper is as follows. The derivation of the leading order (monopole) and 

first order (dipole) potentials is presented in Sec. II when there are no background sheared flows. 

The propagation of blob density is given in Sec. III including the E×B drift from the dipole 

potential as well as the direct effect of curvature and grad-B drifts. Section IV gives explicit 

results for the blob velocity from the fluid theory in several different asymptotic limits depending 

on the spin rate, the collisionality, the perturbed electron pressure and the role of ion inertia. In 

Sec. V, the effect of a sheared background flow on blob propagation is considered. A condition 

for a localized flow to act as a barrier to blob motion is derived, again in the context of rapid 

blob spin. In Sec. VI the expression for the effective dipole conductivity derived in the fluid 
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model is generalized to a kinetic description. Finally, a summary and conclusions are presented 

in Sec. VII. Some detailed results of the calculation are given in an Appendix.  

II. Monopole and dipole potentials: no background flows 

A. Basic equations 

The basic equations of the model are the vorticity equation for  including a 

phenomenological vorticity (spin) damping term  to model dissipation from plasma viscosity or 

neutral friction3,5 

 

2
pi 2

E || ||2
i

2c
J p

t B4
⊥

  +  +    =  +     
v b  (1) 

and a simplified electron drift kinetic equation which will be used to provide the parallel current 

 E || || ||
e ||

f e f
f v f C{f}

t m v

 
+  +  +   =

 
v . (2) 

Here pi and i are ion plasma and ion cyclotron frequencies, vE = (c/B) b   is the E  B 

velocity, J|| is the parallel current density,  is the curvature, p = pe + pi is the plasma pressure, 

f(v||) is the electron distribution function, me is the electron mass and C is the Coulomb collision 

operator.  The subscripts || and ⊥ refer to the parallel and perpendicular projections with respect 

to the background magnetic field B = bB. The only warm ion, finite Ti term retained is the 

contribution to the pressure on the right-hand side (RHS) of Eq. (1). Gyrokinetic ion effects will 

be treated elsewhere.   

A kinetic treatment of the parallel current is given in Sec. VI. Here, to present the basic 

outline of the theory, we take the parallel velocity moment of Eq. (2) and use a Krook model for 

the collision term, C{f} → −. This results in 

 2
|| E || || te || ||

e

ne
(nu ) (nu ) (nv ) nu 0

t m


+  +  −   +  =


v  (3) 

where n is the electron density, u|| is the parallel fluid velocity, and vte is the electron thermal 

speed. 

In the stead-state limit for an isothermal plasma this gives 
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2

e
|| E || || ||

e

Tne
J J ln n

m e

  +  =  −   
 

v  (4) 

where Te is the electron temperature. For example, in the collisional limit  >> vE the result is 

 B e
|| || || ||

T
J ln n

e

 =   −   
 

 (5) 

where 

 
2 2
peB

||
e

ne

4 m


 = =

 
 (6) 

This is just the usual collisional conductivity if we identify  = 0.51ei where the 0.51 is a 

Braginskii coefficient.  

The goal of this section is to solve the vorticity equation to obtain the dipole potential 

using a linearization of Eq. (4) for J||.  Having obtained the dipole potential, we then go on to 

determine the blob convection velocity in Sec. III, first without background flows, then in Sec. V 

with background flows. 

B. Derivation 

In leading order, we assume the blob is a cylindrically symmetric rapidly spinning 

structure with spin frequency b given by the E×B rotation frequency for a blob with a potential 

hill of radius b 

 E0 0 se se 0
b 2

eb

v d c ec
~

r rB dr T

  
 = = −


 (7) 

Here cse = (Te/mi)
1/2 and se = cse/i. We work in blob cylindrical coordinates, where z is along 

the magnetic field which is also the blob-filament axis, r is measured from the center of the blob 

and  is an azimuthal angle around the blob with  

 
x r cos

y rsin

= 
= 

 (8) 

where x is radial, y is poloidal and b = ez. The zero-order blob is taken to be circular in cross-

section, n0 = n0(r), 0 = 0(r) and J||0 = J||0(r). 
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We solve the vorticity equation for the azimuthally symmetric zero order (m = 0) and 

first order dipole (m =1) component of the potential where 

 ||im ik z
e

− +   (9) 

For the m = 0, leading order potential vE(r)2(r) = 0. Since the blob convection velocity is 

assumed to be very small compared with the spin velocity, we can also neglect t2. For 

simplicity we also neglect  in this order. It will cause decay of the blob vorticity on a slow time 

scale. The m = 0 component of the vorticity equation is then just ||J||0 = 0 or from Eq. (5) noting 

that vE(r)J||0 = 0  

 
B 2 e

|| ||,0 || || 0 0
T

J ln n 0
e

  =   −  = 
 

 (10) 

Since  = −ex/R and p(r)  b  is a pure dipole contribution it does not appear in this equation. 

Here the subscript 0 indicates the m = 0 (monopole) component which is also the leading order 

term. 

Since n0 and  only depend on r, it is convenient to take n0 = n0(0) and define an 

adiabaticity parameter 

 e 0
ad

0 0

T dn

n e d
 =


 (11) 

with ad = 1 in the adiabatic limit, and ad = 0 in the collisional reduced MHD limit (i.e., where 

the pressure term is neglected in Ohm’s law and current is proportional to electric field). 

In the simplified slab model considered here, J||,0 is treated as independent of z. These 

definitions result in a zero-order blob structure given by 

 0
0 ad

e

e
ln n

T


=   (12) 

 ( )B
||,0 || || 0 adJ 1= −   −   (13) 

 

For the m = 1 dipole contribution, expanding the vorticity equation in the small parameter 

b/R where b is the blob radius yields 
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2 2
pi pi2 2

E0 1 E1 0 || ||,1 02 2
i i

2c
( ) J p

B4 4
⊥ ⊥

 
 +    +   =  +   

 
v v b  (14) 

The curvature term on the RHS is considered to be a first order correction in this ordering. A 

short digression is required to express J||,1 in terms of 1 for the fluid model.  (As previously 

mentioned, the evaluation of the relationship between J||,1 and 1 for a more general kinetic 

model is the subject of Sec VI.) 

The electron continuity equation in leading order is 

 E || ||
n 1

n J
t e


+  = 


v  (15) 

(The small curvature terms in the continuity equation are not needed here for the calculation of 

J||,1 because the leading order part of the J||,1 term in the vorticity equation is already ordered to 

be competitive.) Since the simulations in Ref. 34 that motived this work show slowly moving 

blobs, with propagation velocity much less that the spin velocity, we again drop the time 

derivative t << vE0. Linearizing about n0(r) and 0(r), using 

 0 0
E1 0 E1 0 E0 1

0 0

dn dn
n

d d
 =  = − 

 
v v v  (16) 

and E0 bi = − v  results in 

 
||1

b ad 0 b 1 ||,1
e

ke
n n J

T e


  −  = . (17) 

To complete the calculation of the linearized conductivity, Eq. (4) is similarly linearized 

to obtain  

 
2

2 0
||,1 b ||,1 || te 1 || 1

e

n e
J i J ik ev n ik

m
 −  = −   (18) 

where we drop vE1J||,0 || under the parallel eikonal assumption ||ln  << k||. 

Eliminating n1 from the previous two equations gives the desired relationship between the 

linearized parallel current and potential 

 ||,1 || ||,1 1J ik= −    (19) 

where the effective linearized conductivity in the fluid model is 
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2

0 ad
||,1 2 2

e b || te b

n e (1 )
i

m [m i k v / (m )]

− 
 =

 +  − 
. (20) 

Here, m = 1, the azimuthal mode number of the blob, has been explicitly reintroduced for later 

reference. (Noting that b in Eq. (23) arises from vE0 acting on first order quantities, 

specifically the exp(−im) factor, this generalization is straightforward.) 

There is no parallel current in the adiabatic limit ad = 1. The collisional MHD limit is 

ad = 0 with   b,  2 2
|| te bk v /  .  In this limit B

||,1 || →  .  Other limits such as large spin (b 

>>  2 2
|| te bk v /  ), and large k||vte (i.e., 2 2

|| te b bk v / ,    ) will be treated in Sec. IV.  Fluid 

theory cannot properly treat the case where the denominator in Eq. (20) is very small; this case 

requires the kinetic analysis of Sec VI since it implies wave-particle resonance. 

Having obtained ||,1 Eq. (19) can be used to eliminate J||,1 from the linearized vorticity 

equation, Eq. (14). This results in 

 
2

1 1 || ||,1 1 0
2c

L k p
B

 −   =   b  (21) 

where the operator L1 is defined by 

 

2
pi 2 2

1 b 02
i

c
L ( im ) ( )

B4
⊥ ⊥

  = −  +   +        
b  (22) 

Eq. (21) has an inertial limit in which L1 (the ion polarization drift and viscous current) 

dominates and a parallel conductivity limit in which 
2
|| ||,1k  dominates. 

For purposes of estimation, the operator L1 may be simplified by making some rough 

approximations. First, we argue that the first term is larger than the second, i.e., we expect that 
2
⊥  acting on the dipole potential 1 will be larger than on the monopole potential 0 simply 

because the former has more structure.  This is not expected to be a strong inequality, but is used 

here for analytical simplification.  Thus, L1 is approximated as 

 

2 2
pi pi2 b

1 b2 2 2
i i b

i (m i )
L ( im ) ~

4 4
⊥

   + 
 −  +  

  
 (23) 

where the final form is a rough scaling estimate. 

The RHS of Eq. (21) is made more explicit by considering a circular Gaussian blob of 

amplitude n0 on a constant background density n00 
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 2 2
0 00 0 bn (r) n n exp( r / 2 )= +  −   (24) 

Using 
1R / y−   = −  b  where b = ez and = −ex/R, performing the y derivative and 

looking near the blob center where exp(−r2/2b
2) → 1, Eq. (21) takes the form 

 
2 e i

1 10 || ||,1 10 02
b

2c(T T ) r
L k i n

RB

+
 −   = 


 (25) 

In this final form, the complex notation of Eq. (9) has been employed, i.e., y = r sin  = Re[i r 

exp(−i)], and 10 is the coefficient of exp(−im) for m = 1.  The physical potential is obtained 

by taking Re [10 exp(−i)] = Re [10 (x−iy)/r]. Thus Re(||,1) gives rise to Im(10) and a 

physical potential that varies in the y direction, for an E×B drift of the blob in the x (radial) 

direction, while Im(||,1) results in a blob E×B drift in the poloidal direction. 

III. Blob propagation 

So far, we have used the vorticity equation for a rapidly spinning blob to obtain an 

explicit equation, Eq. (25), for the dipole potential that gives rise to blob propagation. The 

propagation of the blob density itself is of course described by the continuity equation, which is 

treated in this section. 

The electron form of the continuity equation is 

 E e || ||e
n 2c 1

n (T n ne ) J
t eB e


+  =     −  + 


v b  (26) 

where on the closed surfaces, J||  J||e. Eliminating the parallel current term using the vorticity 

equation, Eq. (1), results in the ion form of the continuity equation 

 

2
pi 2i

E E2
i

|| ||i

n 2cT 2cn
n

t eB B t4 e

1
J

e

⊥
    + +     = −     + +   +           

− 

v b b v

 (27) 

To describe the motion of the blob structure as a whole, it is sufficient to retain only the 

leading order potential 0 on the RHS because these terms are already small from the curvature 

and the convective time derivative respectively.  Similar remarks apply to the density on the 

LHS. Noting that 0(r) is approximately independent of time and gives zero in the convective 
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term therefore the last term may be dropped (in the absence of background sheared flows) and 

we have approximately 

 0 0i
E 0 0 || ||i

n 2cn2cT 1
n J

t eB B e

  + +    = −    −    
v b b  (28) 

Using 0 e 0 adT ln n / (e ) =  , from Eq. (12) the final leading order form of ion continuity 

for a spinning blob is 

 ( )0
E b 0 || ||i

n 1
n J

t e



+ +  = − 


v v  (29) 

where 

 i e ad
b

2c(T T / )

eB


+ 
=  v b  (30) 

The bulk motion of the blob is controlled by the E×B and curvature drifts, where vE = vE0 + vE1. 

The latter are often small and neglected in previous theories of blob propagation, but can be 

important in our rapidly spinning blob theory because the dipole-induced propagation vE1 is 

suppressed by the spin allowing vb to be competitive. Note that the electrons add to the ion 

curvature and grad-B drift of the blob, but in a direction that is opposite to the usual electron 

drift. This happens through the electrostatic potential term on the RHS of Eq. (28) because of the 

Boltzmann electrons. 

Thus, we can expect several separate effects to control the motion of a spinning blob: 

(i) the trivial effect of a blob being carried along by any background E×B flows 

vE0; 

(ii) radial and poloidal blob propagation from the first order potential 1 

contributing to vE1; 

(iii) curvature and grad-B drift effects in vb which will move a blob in the 

vertical direction (down in the usual ion-grad-B drift lower single null 

tokamak configuration) and consequently off of flux surfaces. 

(iv) additional effects not yet included when the background flows have flow 

shear. Those will be discussed separately in Sec. V. 
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This paper is primarily focused on (ii) and (iv), but all of these effects have been observed in 

XGC1 simulations. 

IV. Some asymptotic limits 

Here we explore some asymptotic sub-limits of the present theory of rapidly spinning 

blobs.  The fundamental assumption of the paper is that 0 >> 1 i.e., that the monopole 

potential responsible for the blob spin always dominates the dipole potential responsible for blob 

propagation. Within this fundamental ordering, in the following we consider different relative 

orderings of the three characteristic frequencies , k||vte, b and the ratio that governs the 

importance of the inertial response relative to the parallel conductivity, namely L1/(
2
|| ||,1k  ). 

Substituting for ||,1 from Eq. (20) and L1 from Eq. (23) the condition L1 << 
2
|| ||,1k   to be small 

can be rewritten as 

 

2 2
|| te ad2 2

se b 2 2
b b || te b

k v (1 )

( i )( i k v / )

− 
  

 +   +  − 
 (31) 

Subsections A, B and C that follow consider the case where Eq. (31) is satisfied; Subsection D 

treats the opposite limit. 

Collisional limit 

The collisional limit pertains when  >> b, 
2 2
|| te bk v /  , as seen from Eq. (20) and when 

L1/(
2
|| ||,1k  ) << 1. In this limit one obtains 

 
B

||,1 || ad(1 ) =  −   (32) 

If ad = 0 the result is the collisional reduced MHD limit, as expected. From Eq. (31) L1 is 

negligible when 

 
2 2b
se b ad2 2

|| te

( i )
(1 )

k v

 +  
   −   (33) 

Since we assumed b/(k||vte)2 >> 1, this can only be true for rather large blobs, and the window 

for this regime could be narrow. 
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If these conditions hold, the conductivity is real and positive resulting in outward radial 

blob convection from the dipole potential (10  −i,   −y¸and vE1x > 0). This is as expected 

from standard blob theory where the sheath conductivity, also real and positive, plays the role of 

||,1 here.  

Specifically, invoking L1/(
2
|| ||,1k  ) << 1 in Eq. (25), and using Eqs. (6) and (32) for ||,1  

 0 e i
10 2 2

0 e ad || b

n 2(T T ) r
i

n e (1 ) k R

 + 
 = −

 −  
 (34) 

Here, and in the following, factor n0/n0 = n0/n0(0) = n0/(n00+n0).  This factor describes the 

well-known effect of reduced dipole potential and blob velocity in the presence of a background 

density. The dipole potential is given by 

 i 0 e i
1 10 2 2

0 e ad || b

n 2(T T ) y
Re e

n e (1 ) k R

−   + 
 =  = −

 −  
 (35) 

The radial E×B drift velocity for ad = 0 is 

 s 01
Ex s 2 2

e 0|| b

nc 2
v c

B y nk R

  
= − =

  
 (36) 

where cs = [(Te+Ti)/mi]
1/2 and s = cs/i. This radial velocity result reproduces the scaling law 

in the so-called ‘RX’ or collisional regime of the two-region model.35 In this collisional regime, 

the blob drifts outward with a velocity that increases with  and with n/n. For ad =  1, Eq. (31) 

is violated and we must pass to the inertial regime discussed later. 

Large k||vte limit 

Next consider the case 
2 2
|| te bk v /  >> , b, in the denominator of Eq. (31), but still 

assume that L1/( 2
|| ||,1k  ) << 1. The result is 

 B b
||,1 || ad2 2

|| te

i (1 )
k v

 
 = −  −   (37) 

By assumption 
B

||,1 ||    and ||,1 is also independent of . The condition L1/(
2
|| ||,1k  ) << 1 

from Eq. (31) implies that 
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2 2 b
s b ad

b
(1 )

i


   − 

 + 
 (38) 

which is not difficult to satisfy. The conductivity is imaginary and positive (since b < 0), 10 is 

real and negative resulting in poloidal blob motion (10  −,   −x and vE1y < 0).  Recall that 

in the present analysis B = Bez therefore the positive y direction is ey = b × e where e points 

radially outward. Specifically, we have 

 e s 0 s
10 2

b ad 0 b

2T c n r

e R(1 ) n

 
 =

 −  
 (39) 

and the poloidal E × B drift velocity for ad = 0 is 

 se se s 01
Ey s 2

0b b

2c nc
v c

B x nR

  
= =

  
 (40) 

The inequality given by Eq. (38) as well as the perturbation expansion condition 1 << 0 limit 

the maximum vEy that can occur. 

Large spin limit 

The other limit for ||,1 is that of large spin, b >> || tek v , .  The designation ‘large spin’ 
is used somewhat loosely here since the entire theory presented in this paper is a large spin limit.  

The fundamental ordering of the paper is 0 >> 1 which, for example, is quite different from 

b >>  considered here. 

The effective conductivity is 

 
2

ad
||,1

e b

ne (1 )
i

m

− 
 =


 (41) 

For L1/(
2
|| ||,1k  ) << 1 the complex potential is 

 0 e i b
10 2 2

0 e ad || b

n 2(T T ) r

n e (1 ) k R

 + 
 = −

 −  
 (42) 

and the resulting poloidal velocity for ad = 0 is 

 b s 01
Ey s 2 2

e 0|| b

2 nc
v c

B x nk R

  
= = −

  
 (43) 
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where again we use i
1 10Re e .−  =   

Inertial limit 

The inertial limit pertains when L1/(
2
|| ||,1k  ) >> 1, i.e. when the inequality in Eq. (31) is 

violated.  In this case we can make the rough estimates 

 i e i 0
10

b 0

2 (T T ) n r
~

e( i ) n R

 + 


 + 
 (44) 

 
i s 01

Ex s 2 2
0b

2 nc
v ~ c

B y n( )R

   
= −

  + 
 (45) 

 
i s b 01

Ey s 2 2
0b

2 nc
v ~ c

B x n( )R

   
=

  + 
 (46) 

This large spin inertial limit is different from the zero-spin inertial limit considered in 

many earlier studies.3,4 Here the inertial term L11 is linear in the dipole potential; in the zero-

spin theory there is no 0 to linearize about, and the inertial term is nonlinear in the dipole 

potential.  This results in a different velocity scaling. The inertial limit here is most similar to the 

limit W > 1 considered in Ref. 5, where W in that reference was defined as the ratio of the spin-

dependent part of the inertial term to the sheath conductivity for a sheath connected blob. It was 

shown there that for W > 1 the spin reduced the radial blob velocity and gave rise to a poloidal 

velocity.  This trend is also evident in Eqs. (45) and (46). 

Spinning blob regimes 

Analogous to the regime diagrams that were developed for non-spinning blobs35,36 a 

convenient regime diagram for spinning blobs can be obtained by making some simplifying 

assumptions.  The inertial/conductivity boundary is the most complicated. From Eq. (31) it can 

be seen that four dimensionless parameters are required in general. A suitable choice is 
2 2
b ad se(1 ) / −   , b, 

2 2 2
|| te bk v /  and /b. Some simplification in the inertial/conductivity 

boundary results if we only consider the fluid (k||vte/b << 1) and kinetic (k||vte/b >> 1) parallel 

electron response limits and furthermore examine the case  << b   Then Eq. (31), the 

condition for conductivity dominated blobs, i.e., for the term containing ||,1 to dominate the 

term containing L1 in Eq. (25), becomes 
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2
b 2 2 2b

ad || te b2 2 2 2
|| te b se

2
2 2 2b

ad || te b2
se

1 i /
(1 ), k v / 1

k v /

1 (1 ), k v / 1

+   
 −   

 


 −   



 (47) 

Therefore, an interesting diagram for the inertial vs conductivity response is a plot in the space of 

the dimensionless combinations 
2 2
b ad se(1 ) / −    and 

2 2 2
b || te b1 i / / (k v / )+    . This is shown 

in Fig. 1. 

2
b

ad2
se

(1 )


− 


b
2 2 2
|| te b

1 i /

k v /

+  



inertial
2 2 2
|| te bk v / 1 

conductive

2 2 2
|| te bk v / 1 

inertial

2 2 2
|| te bk v / 1 

conductive
2 2 2
|| te bk v / 1 

1

1

 
Fig. 1 Diagram for the boundaries delineating the inertial and conductivity dominated 

regimes for spinning blobs when  << b.  The red boundary applies in the limit k||vte/b 

<< 1. The inertial response term containing L1 is dominant above and to the left of the red 

line. As k||vte/b increases, the boundary shifts towards the blue line, which is the 

boundary in the limit k||vte/b >> 1. In this case the inertial term dominates to the left of 

the blue line, while the parallel conductivity term containing ||,1 dominates to the right of 

the blue line. 

 When the blobs are in the conductivity dominated case, another diagram determines 

whether they fall under the collisional, large k||vte, or large b limits. The resulting diagram, 

based on the asymptotic limits discussed for each of these cases is shown in Fig. 2. 
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Fig. 2 Diagram for the boundaries delineating the various conductivity dominated regimes 

for spinning blobs. The label ‘mobile electrons’ is the same as the k||vte/b >> 1 limit 

discussed in the text. 

The asymptotic regimes presented in Figs. 1 and 2 are for conceptual use and 

visualization. The spinning blob propagation velocities join smoothly across all the regime 

boundaries and may be determined by the unified (qualitative non-asymptotic) expressions given 

in Appendix A.  Finally, since this entire present paper explores the asymptotic limit of large 

spin, it should be kept in mind that 0 >> 1 is required. 

V. Effect of background zonal flow on blob motion 

As briefly reviewed in the introduction, previous theoretical studies have shown how a 

blob or localized vortex interacts with a sheared flow.5,18-20 These studies suggest that tearing 

apart of the blob as well as modifying its propagation are possible. Experimentally, blobs with 

negative radial velocity have been observed.13,32  In particular, see Fig. 7.  of Ref. 32 and note 

that Fig. 2 for an H-mode plasma shows some blobs confined inside the separatrix and one that 

appears to ‘bounce’ off the separatrix. Negative blob velocities have also been observed in 

XGC1 simulations.23,34,37   

We will show in this paper that a possible explanation for negative radial velocity blobs 

is the interaction of spinning blobs with a flow shear layer. We also investigate other types of 

interactions within the context of the present rapidly spinning blob theory. 
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A background EB zonal flow vEf will of course contribute to the net blob velocity vE in 

Eq. (30).  But there is a more subtle effect that was observed in recent seeded blob simulations.34 

Although the zonal flow is poloidal and toroidal, the blob’s radial motion is influenced by the 

zonal electrostatic potential.  Considering the interactions in the plane perpendicular to B, the 

vorticity is defined as  = b×v  
2(c / B) ⊥  where  includes the blob spin as well as the 

background sheared zonal flow.  Since 2
⊥   may also be interpreted as a charge density, 

vorticity interactions are also related to the interaction of distributed charges. 

The derivation takes place in the frame of the background flow at the blob center.  In this 

frame the starting point is the steady state version of the vorticity equation 

 ( )
2
pi 2

E || ||2
i

2c
J p

B4
⊥


 +    =  +   


v b  (48) 

where now  contains zero order pieces describing the blob spin 0(r) and the background zonal 

flow f(x) and we wish to solve for the perturbation term 1f resulting from the interaction of 

these flows. Let the dipole term that we obtained previously, driven directly by b×p, still be 

denoted by 1 and let the new flow dependent addition be 1f. 

 0 0f 1 1f(r) (x) =  +  +  +   (49) 

Within the small flow large spin ordering vE0f/b << b adopted here, the zero order 

flow terms may be dropped in the derivation of the linearized conductivity and ||,1 is still given 

by Eq. (20), except for the choice of m that we will return to. Within this limit the perturbed 

vorticity equation is 

 

2
pi2 2e

1 ||,1 || 1 1f 0 E0 0f2
i

2
E0f 0

2cT
(L k )( ) n (

B 4

)

⊥

⊥


−   +  =    −  



+  

b v

v

 (50) 

where the definition of L1 in Eq. (22) must now be generalized to 

 

2
pi 2 2

1 E0 E0f 0 0f2
i

c
L [( ) ] [ ( )]

B4
⊥ ⊥

  = +  +   +    +     
 

v v b  (51) 

and we have used the fact that 
2 2

E0 0 E0f 0f 0⊥ ⊥  =   =v v  because b annihilates any 

function that only varies in the same direction that  varies in. Since zero order spin terms are 
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assumed to be dominant in this theory, products of zero order flow terms on the RHS of Eq. (50) 

have been dropped. Following the same reasoning, the zero order flow terms on the LHS, 0f 

and vE0f, may be dropped with respect to 0 and vE0 although there is no need to do that 

explicitly in the manipulations that follow. We continue to use the subscript ‘1’ for the 
perturbation; however, in this case the perturbation will contain both m = 1 and m = 2 terms. 

Using Eq. (21), which defines 1 in the absence of background flow, and canceling these 

terms leaves an equation for the effect of the background flows on the perturbed blob potential 

 

2
pi2 2 2

1 ||,1 || 1f E0 0f E0f 02
i

(L k ) ( )
4

⊥ ⊥


−   = −   +  


v v  (52) 

The terms on the RHS have a simple physical interpretation. The first term represents the charge 

polarizing force from the interaction of the zonal vorticity 2
0f⊥   with the blob electric field 

vE0. The second term represents the charge polarizing force from the interaction of the blob 

vorticity 2
0⊥   with the zonal electric field vE0f.   

In the rest frame of the blob center, the background flow varies across the blob as vE0f  

x vE0f/x provided that x ~ b << Lf where Lf is the scale length of the flow. This is the easiest 

case to treat and will be dealt with first. In that limit 2 2
E0 0f E0f 0⊥ ⊥    v v  and Eq. 

(52) reduces to 

 

2
pi e2 2

1 ||,1 || 1f 0f 02
i ad

T
(L k ) v x ln n

y4 e
⊥

 −   = − 
 

 (53) 

where vE0f  v0f ey and  denotes /x. 

In the central portion of the blob, r << b, and taking the small blob amplitude limit 

n0/n0 << 1 for analytic simplification, we find for the Gaussian profile of Eq. (24) 

 
2 0

0 4
0b

n4y
ln n ...

y n
⊥


 = +

 
 (54) 

Note that substituting Eq. (54) into Eq. (53) gives   xy, which has a quadrupole structure that 

results in quite different dynamical behavior than the familiar blob potential dipole. For example, 

in the collisional limit one obtains a contribution to the blob velocity from its interaction with the 

sheared flow as 
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 se se 0
1f 0f y x2 4

0i e || ad ad b

c n4
v (y x )

nk (1 )

   = −
  −   

v e e  (55) 

Because x and y change sign across the blob center, the left and right sides of the blob 

move in opposite directions, as do the top and bottom parts. When the flow pattern compresses 

the blob in x, it tears the blob apart in y, and vice versa.  Net radial motion of the blob (repulsion 

or attraction to shear layer) can occur when 0fv  is a function of x. 

The local radial velocity of a given part of the blob structure is proportional to −x v0f  = 

−v0f  which in turn  is proportional to −x = E0fx  i.e. the radial electric field creating the 

flow. Referring back to the discussion of Eq. (52), this shows that the local motion of the blob in 

the radial direction behaves like a positive charge, i.e., it moves in the direction of the 

background (zonal) electric field, as previously demonstrated.34   

When the condition b << Lf does not hold, both terms on the RHS of Eq. (52) must be 

retained. It is straightforward to show that the resulting equation is 

 

2
pi e2 20

1 ||,1 || 1f 0f 0f 02
i ad

2
pi e 0f 0

2
f bi ad b

T d ln n1
(L k ) y v v ln n

r dr y4 e

T v ln n 1 1
~

L4 e

⊥
  −   = −     

  
+     

 (56) 

where in the second form, for later use, a size and scaling estimate has been obtained by 

replacing blob gradients by 1/b and flow gradients (/x) by 1/Lf.  The resulting radial blob 

velocity is proportional to 1f/y and hence v1fx is proportional to 

 
2 2 2

20
1fx 0f 0f 02 2 2

ln n
v̂ v v ln n

y x y
⊥

  
 − 

  
 (57) 

with a positive constant of proportionality. For example, in the collisional limit the constant is 

the pre-factor in Eq. (55), 2
se se i e || ad adc / [ k (1 ) ]    −   . 

An example of the contribution to the radial blob velocity, using Eq. (57) and the 

Gaussian profile of Eq. (24) for n0, is shown in Figs. 3 and 4.  In Fig. 3, a sample zonal flow 

potential is given in normalized units (see caption) by 0f = exp[−(x+2)/4] + 4 exp[−x2/2]. The 

radial electric field is just the negative of v0f. The zonal profiles have shapes which are 

qualitatively similar to what is normally observed near the separatrix where the radial electric 
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field changes sign. Note that the blob is of modest amplitude, n/n0 = 1 and that it extends over a 

region where the zonal flow varies significantly. Hence, this case has b ~ Lf. 

For the calculation illustrated in Fig. 4, the left-hand-side of Eq. (56) is assumed to be in 

a dissipative regime (dominated by either  or ). The interaction depends on the location of the 

blob center and the interaction of the blob with the zonal flow extends over a range of order x0−1 

to x0+1.  At x0 = −3, panel (a), the blob experiences a net negative velocity, i.e., one that repels it 

from the shear layer concentrated at x = 0 (the ‘separatrix’). The interaction also compresses the 

blob radially since the very left-most part of the blob (x ~ −4) moves slightly to the right. In Fig. 

4 (b), at x0 = −1, the net radial velocity is positive and to the right. We speculate that this change 

of net sign with the blob location x0 in Fig. 4 (b) relative to Fig. 4 (a) may encourage blob 

bifurcation. 

 

v0f

n0

0f

 0n

 
Fig. 3 Profile of the zonal flow potential 0f (black dashed) and corresponding zonal 

velocity v0f (black) superimposed on the blob profile (blue) cut through its midplane, 

y = 0. The vertical scales are arbitrary, and the horizonal (spatial) scale is normalized to 

the blob radius. The background density n0 and blob amplitude above background n0 

are equal. 
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(a) (b)

(c) (d)

 
Fig. 4 Midplane cuts of the blob radial velocity v1fx from Eq. (57) for the zonal flow and 

blob density profiles illustrated in Fig. 3. The contribution of the first term from Eq. (57) is 

shown in red, the second term in blue and the total in black. The vertical scales are 

arbitrary, and the horizonal (spatial) scale is normalized to the blob radius. The position of 

the blob center x0 is given in each panel: (a) x0 = −3, (b) x0 = −1, (c) x0 = 1 and (d) x0 = 

3.   The approximate interaction zone, x0  1, is indicated by the shaded region. 

 

At x0 = +1, Fig. 4 (c), the net radial velocity is again negative, which will tend to trap the 

blob near the separatrix, if the zonal flow is sufficiently strong. If the blob does escape further 

into the ‘SOL’ at x0 = +3, Fig. 4 (d) shows that the zonal flow there contributes to its positive, 

right-going, velocity. 

This illustration shows that a sheared flow layer can act as a barrier to radial blob 

propagation in the spinning blob regime, as seen in XGC1 simulations.34 Since the radial blob 

velocity from the dipole (curvature and grad-B) interaction is outward, a necessary condition for 

a blob barrier (in addition to the direction shown in Fig. 4) is that the RHS of Eq. (56) exceeds 

the RHS of Eq. (21). Replacing blob gradients of these terms by 1/b and estimating  ~ −1/R, 

we arrive at the approximate barrier condition for a rapidly spinning blob 
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 0f
b b0

i f b

Rv 1 1
C C 1

L

 
 +    

 (58) 

where Cb0 is an order unity numerical factor, roughly estimated as Cb0 ~ ln n0 / (2ad), but best 

obtained from simulations.  From the simulations of Ref. 29 the deduced value obtained was Cb0 

 1/1.75 = 0.57. When the condition Cb > 1 is met, the shear layer can repel the approaching side 

of the blob and prevent it from crossing the layer. 

Within factors of order unity, it was shown that this condition was satisfied in the XGC1 

simulations of Ref. 34 where both reflection and bifurcation were observed.  Turning to 

experiments, taking the illustrative parameters for an Alcator C-Mod H-mode,38   E0fv = 2  

106 /s, i = 2.4  108/s at B = 5 T, R = 90 cm and Lf = b = 0.5 cm we find Cb/Cb0 = 3.0 

indicating a substantial blob barrier. 

The other effect of the quadrupole potential introduced by the sheared flow, evident in 

the b << Lf limit, is the stretching of the blob in the direction orthogonal to the compression.  

This quadrupole distortion may also assist in the bifurcation of the blob. 

Finally, note that the derivation of Eq. (58) makes no assumption about the regime the 

blob is in as long as it is rapidly spinning, 0 > 1.  It could just as well apply to a sheath-

connected spinning blob in the SOL.  It is therefore interesting to compare Eq. (58) with the 

condition given by Yu and Krasheninnikov in Eq. (15) of Ref. 11 for a non-spinning sheath-

connected blob.  Their condition for significant interaction with a biasing potential may be 

written in the form 0f i b f || sv L / (L )      where Lf << b has been assumed to insure a large-

blob that would be in the sheath-connected limit and L|| is the magnetic field line connection 

length to the sheath. Comparing with Eq. (58) for ad ~ 1 leads to the conclusion that a sheath-

connected rapidly spinning blob will interact more strongly with a shear flow layer than a non-

spinning blob if L||s/(Rb) < 1. Of course, the interactions can be quite different in the two 

cases, since the spinning blob will tend to be more coherent as discussed next.  

The interaction of a ‘nonthermalized spinning blob’ with a weak externally imposed 

shear layer was also considered in the sheath-connected limit in Ref. 5.  Here the term 

‘nonthermalized spinning blob’ refers to blob spin induced by a sheath potential  ~ 3Te that 

varies radially across the blob because of its internal electron temperature gradient. Spin was 

shown in numerical studies to increase blob coherency and have different effects on the blob 

evolution depending on the relative sign of the blob vorticity and that of the shear layer. 
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VI. Parallel electron kinetics 

The goal of this section is to derive a kinetic expression for ||,1 i.e., the relationship 

between the linearized parallel current and the parallel electric field, from a drift-kinetic theory 

which allows retaining the streaming term, v||||. The 1-D electron drift kinetic equation in the 

direction parallel (to B) in our model is 

 E || || ||
e ||

f e f
f v f C{f}

t m v

 
+  +  +   =

 
v  (59) 

where C{f} is the electron-ion collision operator and the small curvature and grad-B drift terms 

are neglected since we will only use this equation to get the leading order relationship between 

the electrostatic potential and the parallel current. This should be valid under the easily satisfied 

assumption that the curvature and grad-B drift frequencies obey , B << b where as 

previously b is the blob spin rate. 

In lowest order we take f = f0 to be a Maxwellian 

 

2
||0 0

0 1/2 2
te te

vn ( )
f exp

(2 ) v 2v

   = −
   

 (60) 

Since the blob moves slowly compare to the spin rate, the time derivative in Eq. (59) may be 

neglected. Furthermore vE0f0 = 0 and C{f0} = 0. In the adiabatic limit f0 is a function of 

energy so that the terms involving v||||f0 and f0/v||||0 cancel.  More generally, in this 

section as previously, we simply assume for analytical expediency that || on equilibrium 

quantities may be neglected. Then f0 satisfies Eq. (59). 

The equation for the linearized distribution function f1 is 

 01
E0 1 || || 1 1 E1 0 || 1

e ||

ff e
f v f C{f } f

t m v


+  +  − = −  −  

 
v v  (61) 

Decomposing into f1 and  into Fourier components as before, anticipating m = 1 for the 

azimuthal variation 

 ||i ik z
1 1,f e

− +   (62) 

yields  
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|| 1

b 1 || || 1 1 E1 0 || 0
e

ik e
i f ik v f C{f } f v f

T


−  + − = −  +v  (63) 

In this section, we do not consider background E×B flows, or equivalently, work in the flow 

frame. The time derivative has again been neglected compared with the spin rate.  

To proceed, we use a Krook model for the collision term, C{f} → − and note that 

 
0

0 0 ad 0 0
0 e

n e
f f f

n T


 = =    (64) 

Furthermore using E1 0 E0 1 b 1i−  =  = −  v v Eq. (63) becomes 

 ( )1
b 1 || || 1 1 b ad 0 || || 0

e

e
i f ik v f f i f ik v f

T


−  + +  = −   +  (65) 

In order to make an analogy to the usual perturbed 1D Vlasov equation in a homogeneous 

plasma it is convenient to temporarily define b i   +  . This results in 

 
0 0 1 || 0

1
|| ||

K f K v f
f

i( k v )

+
=

− −
 (66) 

where 

 1
0 b ad

e

e
K i

T


= −    (67) 

 1
1 ||

e

e
K ik

T


=  (68) 

Applying −edv||v|| one obtains 

 
0 1 ||

||,1 || || 0
|| ||

K K v
J ie dv v f

k v



−

+
= − 

−
 (69) 

Defining  = /(21/2k||vte) and performing some algebraic manipulations, J||,1 can be cast into the 

form 

 ||,1 ||,1 || 1J i k= −    (70) 

where the linearized conductivity in our kinetic model is given by 
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2

0
||,1 b ad2

|| e

n e
i [ (1 ) i ][1 Z( )]
k T

 = −  −  +  +    (71) 

and Z() is the plasma dispersion function. In obtaining this result, it is useful to note the 

following: 

 

2t

1/2

1 e
Z( ) dt , Im 0

t

−

−
 =  

− 
 (72) 

 

2t

1/2

1 te
dt 1 Z( )

t

−
= − −  

 −
 (73) 

 

22 t

1/2

1 t e
dt 1 Z( )

t

−
= − −  

 −
 (74) 

The integrals in Eqs. (73) and (74) are conveniently evaluated by adding and subtracting  in the 

numerator of Eq. (73) and 2 in the numerator of Eq. (74) to create a term that cancels the 

resonant denominator. 

The conductivity ||,1 derived here may be used directly in the expressions given in 

Sec. II, specifically in Eq. (25) in place of the fluid limit conductivity, to obtain the dipole 

potential 1 and the radial and poloidal blob velocities. The same replacement may be made 

throughout Sec. IV. Detailed unified results are given in Appendix A. 

Before closing this section, we consider some asymptotic limits. The fluid limit is 

recovered by first invoking the large argument limit of the Z-function 

 
2 4

1 3
1 Z( ) ..., 1

2 4
+   = − − +  

 
 (75) 

to obtain 

 
2

0 b ad
||,1 2

e b

n e i (1 )

m ( i )

 −  − 
 =

 + 
 (76) 

In the collisional sublimit  >> b one recovers the collisional result of fluid theory, Eq. (32). In 

the collisionless sublimit, or large spin limit  << b the result agrees with Eq. (41). 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
5
2
3
8
9



28 
 

In the small argument limit, the Z-function expands to 

 1/21 Z( ) 1 i ..., 1+   = +   +    (77) 

and the corresponding conductivity is 

 
2

0
||,1 b ad2

|| e

n e
[ i (1 ) ]

k T
 = −  −  +   (78) 

It suggests the possibility of a regime where the Re(||,1) increases with  and hence the radial 

blob velocity decreases with , opposite to the dependence in the collisional regime  However, 

the small argument limit of Z() is of questionable validity unless the plasma is also 

collisionless.  This is because the Krook model probably cannot correctly capture long mean free 

path physics,  << k||vte. In the more justifiable collisionless sublimit  << b one recovers 

Eq. (37), noting that it is independent of  when 
B
||  is eliminated. 

 
2

0
||,1 b ad2

|| e

n e
i (1 )
k T

 = −  −   (79) 

In general, the linearized parallel conductivity in our kinetic theory contains both real and 

imaginary parts. As a result, the dipole potential gives rise to both radial and poloidal blob 

motion. In particular, Eq. (71) implies finite Re (||,1) and consequently radial blob propagation 

in the regime  ~ 1 as a result of electron Landau damping. 

VII. Summary and conclusions 

In this paper, we have presented a theory of blob dynamics in a large spin ordering. The 

basic perturbation parameter is 1/0 where 0 is the internal radial potential of the blob 

responsible for its spin and 1 is the dipole (or quadrupole) potential giving rise to radial and 

poloidal E×B blob propagation relative to the background flow.  

The main results of our paper are Eq. (25) for 1 where L1 is given by Eq. (22) or its 

estimate in Eq. (23) and the effective plasma conductivity ||,1 in the fluid model is given by 

Eq. (20).  In the parallel electron kinetic generalization of the fluid model ||,1 is given by 

Eq. (71). It was shown that the kinetic result reproduces the fluid result in appropriate limits. A 
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minor extension of the theory could also include the sheath conductivity in  ||,1 making the 

results applicable to sheath-connected blobs in the SOL. 

The total velocity of the blob is given as the sum of E×B and curvature drifts in Eqs. (29) 

and (30) where E includes the background zonal flows and the gradients of the dipole (or 

quadrupole) blob potential. Explicit expressions for 1 and the resulting radial and poloidal 

propagation velocities of the blob are given in various asymptotic limits in Sec. IV. Results are 

qualitatively in agreement with XGC1 simulations in order of magnitude.  Detailed comparisons 

will be presented elsewhere. 

Special attention was given to the interaction of the blob with a zonal flow shear layer. 

The flow-induced potential on the blob in the small flow ordering, vE0f/b << b (or 

E0f bv   ) is given in Eq. (52). It was demonstrated that a spinning blob can be reflected by a 

sufficiently strong shear layer and a rough analytical criterion for this transport barrier effect was 

given in Eq. (58).  It was shown that the criterion was satisfied in recent XGC1 seeded blob 

simulations where the transport barrier was observed, and the barrier estimate was shown to be 

relevant to typical Alcator C-Mod H-mode plasmas. Another important result from the shear 

layer analysis is the generation of a quadrupole blob potential, as shown in Eq. (53). The 

quadrupole potential should encourage blob bifurcation within a shear layer through both radial 

dynamics illustrated in Fig. 4 and by poloidal stretching combined with radial compression, as 

seen in Eq. (55). 

The present calculation has two major deficiencies: (i) the Krook collisional model does 

not allow a rigorous treatment of collisions, especially in the long mean free path limit; and (ii) 

the calculation does not take into account the parallel variation of the zero-order potential, or of 

other zero order equilibrium quantities such as the magnetic field geometry. A parallel variation 

of the first order dipole potential is introduced through k||. This is only rigorous within the model 

if it is driven by the parallel variation of the curvature, which is regarded as first order. In reality, 

other effects such as the magnetic or EB drift of the entire filament off a field line or instability 

of the filament can give rise to parallel variation.  Thus, the model presented here is idealized in 

many respects. However, these idealizations allow analytical estimates for the magnitudes of the 

blob velocity and the transport barrier criterion.  

Initial qualitative and some quantitative comparisons of the theory with both experiments 

and simulations are promising.34 These include the observed coherency and longevity of nearly 

circular blobs, blob bifurcation near the separatrix, negative radial motion of blobs, and a shear 
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layer barrier for blob propagation. If future work continues to show acceptable agreement of the 

theory with simulations and experiments, it will add to the available tools for understanding edge 

and scrape-off layer turbulence and transport.  
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Appendix A: Unified expressions for the dipole-induced blob velocity 

Recall that in the present analysis B = Bez therefore the positive y direction is ey = b × e 

where e points radially outward, in the positive x direction. With this convention the scaling of 

the rapidly spinning dipole-induced blob velocity can be summarized in a convenient form by 

collecting together suitable dimensionless combinations.   

The starting point is Eq. (25) with L1 estimated by Eq. (23) and m = 1. After a small 

amount of algebra, the blob velocity from the dipole electric field can be written as 

 
se

Ex se
S

v c Im
R D


= −  (A1) 

 
se

Ey se
S

v c Re
R D


=  (A2) 

 

2
pi 0i

i b e 0

2 nT
S 1

T n

   
= +    

 (A3) 

 D L i= +   (A4) 

 se se
b 2

b

c 
 =


 (A5) 
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2
pi
2

bi

i
L 1

  
= +   

 (A6) 

 
2 2
|| b

||,1
b

4 k 
 = 


 (A7) 

 ei0.51 =   (A8) 

Throughout, perpendicular gradients of the blob have been estimated as ⊥→ 1/b. These results 

are therefore to be interpreted as rough order of magnitudes estimates of the blob velocity that 

may also be useful for determining how the blob velocity scales with various parameters. Either 

the fluid form for ||,1 given by Eq. (20) or the parallel electron kinetic form in Eq. (71) may be 

employed in Eq. (A7). 

A compact result may be written as 

 
( )

s 0i
Ey Ex s 2 2

0b || b ||,1

n2
v iv c

R ni 4 ik

⊥

⊥

  
− =

  +  +   
 (A9) 

where 2 2
pi i/⊥ =    is the low frequency plasma dielectric. Substituting for ||,1 explicitly using 

the fluid limit form gives 

( )

2 2
i b || te bs 0

Ey Ex s 2 2 2 2 2
0 b b || te b || b pe ad

2 ( i k v / )n
v iv c

R n i ( i k v / ) k (1 )

⊥

⊥

   +  −  
− =

  +   +  −  −   − 
 (A10) 

from which all of the asymptotic limits of Sec. IV may be recovered. The expressions in this 

appendix do not include the interactions of the blob with a sheared flow. They are just the 

fundamental dipole curvature and grad-B induced propagation velocities. 
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